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OPTIMAL STATIONARY CONTROL OF A LINEAR SYSTEM 

WITH STATE-DEPENDENT NOISE - 

W. M. Wonham 

1. Introduction. 

Consider the linear control system described by the formal 

s t . o r h a s t i  c. differential equation 

x = AX - BU + Cwl + G{x)G2 

In (l.l), u is the control and Gl, G2 are independent Gaussian 

white noise disturbances. The elements of the matrix G are assumed 

to be linear in x ; and so the term G(x)G2 represents a disturb- 

ance of which the intensity is roughly proportinnal to the deviation 

of x from the origin x = 0 . Equivalently, the disturbance can 

be regarded as a wideband random perturbation of the system matrix 

A .  

* 

Now consider the problem of choosing a feedback control 

u = @(x) 

cost 

such that, in the steady state, the expected quadratic 

E{x'Mx + u'Nu} 

*A precise interpretation of (1.1) is given in $2. 
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i s  a minimum. I f  G(x) 0 , t h e  so lu t ion  of t h i s  problem i s  wel l  

known [l], [23. The optimal con t ro l  always e x i s t s ,  and i s  a l i n e a r  

func t ion  of x which i s  independent of t h e  i n t e n s i t y  of t h e  add i t ive  

dis turbance 

con t ro l  e x i s t s  f o r  t he  more genera l  system (lei), provided t h e  s t a t e -  

Ctjl . I n  t h e  present  no te  it i s  shown t h a t  an optimal 

dependent no ise  G(x)G2 i s  s u f f i c i e n t l y  small. The optimal con t ro l  

i s  again l i n e a r ,  bu t  i s  now r a t h e r  c r i t i c a l l y  dependent on t h e  co- 

e f f i c i e n t s  of G . Examples a r e  provided t o  show t h a t  i n s t a b i l i t y  

may r e s u l t  i f  t h i s  dependence i s  ignored. 

The problem i s  s t a t e d  p r e c i s e l y  i n  $2; t h e  proof of ex- 

i s t e n c e  i s  given i n  $3 and 44; and some examples s tud ied  i n  495,6. 

We conclude w i t h  some remarks on t h e  i n t e r p r e t a t i o n  of (1.1) and 

d iscuss  a l t e r n a t i v e  opt imizat ion problems which a r e  c l o s e l y  r e l a t e d .  

2 .  Statement of t h e  problem. -- 
To make (1.1) prec i se  we assume t h a t  x i s  an n-vector 

with s tochas t ic  d i f f e r e n t i a l  

dx = Axdt - Budt + Cdwl + G(X)dW2 . 

I n  (2.1),  A , B and C a r e  r e a l  cons tan t  mat r ices  of  dimension 

n X n , n x m and n x dl respec t ive ly ;  G(x) i s  an n x d2 

mat r ix  with (i, j ) t h  element 
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a r e  constants .  It i s  assumed t h a t  g i j k  where t h e  c o e f f i c i e n t s  

(A, B) i s  cont ro l lab le ,  and t h a t  CC' i s  p o s i t i v e  d e f i n i t e :  t h a t  

i s ,  d 2 n and C i s  of rank n . The l a t t e r  assumption obvia tes  

fussy  d iscuss ion  about poss ib le  degeneracy of t he  ergodic measure 

(see below); it would ac tua l ly  be enough t o  assume t h a t  (A, C )  i s  

con t ro l l ab le .  F ina l ly ,  w and w2 a r e  independent Wiener processes  

of dhens io r ,  dl, cI2 r e s p c t i v e l y .  

1 -  

1 

I n  t h e  following, E denotes Euclidean n-space; a 

prime ( ' )  t h e  t ranspose of a vector  o r  matrix;  and 1 . 1  t h e  

Euclidean norm. 

I n  (2.1) l e t  u = @(x)  , where @ i s  def ined on E and 

s a t i s f i e s  a uniform Lipschi tz  condi t ion 

With t h i s  choice of 

equat ion of It^ols type  [3]: 

u , (2.1) becomes a s tochas t i c  d i f f e r e n t i a l  

dx(t) = Ax(t)dt - B@[x(t)]dt  + Cdwl(t) + G[x(t)]dw2(t) (2.4) 

If x ( 0 )  i s  a random va r i ab le  independent of t h e  wl, w2 i n -  

crements then (2.4), def ined f o r  

proc es s 

t I O  , determines a d i f fus ion  

I X@ = (x , ( t )  : t 2 0) . 
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Diffusion processes are discussed extensively in [ b ] ;  a brief 

summary can be found in [ ? I .  

Of interest here is the case when XQ is positive re- 

current (for the definition of this term see [? ] ) .  Under this con- 

dition it is known that there exists a unique ergodic probability 

measure pQ defined on the Bore1 sets of E : that is, If the 

distribution of x(0) is pQ then so is that of x(t) for all 

t > 0 . Let @ be the class of admissible control functions 0 , 
with the properties 

(i) Q satisfies ( 2 . 3 )  for some constant k 

(ii) XQ is ergodic 

(iii) The corresponding ergodic measure is such that W Q  

Now define 

L(x, U )  = x'MX + u'NU (2.6) 

where M, N are constant symmetric positive definite matrices of 

dimension n x n , m X m respectively. 
0 

Our problem is the following: find a control 0 c CP -- 
which is optimal in the sense that -- --- 

0 

e,o(L(x, Q ) )  = min [&@(L(x, Q)) : Q E 41 



3. Existence of an admissible control. 
I- 

In this section it will be shown that @ is nonempty 

of (2.2) are sufficiently small. gijk 
provided the coefficients 

This result will follow from the stability theorem stated below. 

Let V = V(x) be of class C (2) on E and let du 

denote the elliptic operator 

1 i V(x) = tr([C + G(x)]'V (x)[C + G(x)]) + (Ax - Bu)'V (x) (3.1) 
U z xx X 

the vector [dV/dxi] and Vxx vx In (3.1), tr denotes trace, 

the matrix [d2V/&.dxj] . The operator 

u = 9(x) in (3.1), is the differential generator of X [4]. 

obtained by setting i @  9 1 

9 

The following theorem is an immediate consequence of (2.6) 

and the results of [6]. 

Theorem 3.1 

(2) on E , If there exist a function V(x) of class C - -- --- - 
and a positive number h , - such that 

L,V(X) 5 h - L[x, @(x)] 

(3.2) 

(3 .3)  
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To apply t h e  theorem s e t  

"x) = Kx 

v(x) = X'PX 

(3 .h-a) 

(3.4b) 

where K, P a re  constant  m x n ( resp .  n x n) matr ices ,  t o  be 

determined so t h a t  

Le,V(X)  = h - L[x, @(x) ]  (x E E)  . ( 3 . 5 )  

Let Gk denote the  n x d2 matrix with (i, j ) t h  element gijk ; 

and l e t  n(P)  be t h e  symmetric n x n mat r ix  with elements 

(3.6) 

Then 

(3.3) i f  and only i f  

a b r i e f  ca l cu la t ion  shows tha t  (3.4) determines a so lu t ion  of 

h = ~ ~ ( C ' P C )  

and 

n ( P )  + (A - BK)'P + P(A - BK) + M + K'NK = 0 (3 - 8 )  

By our assumption of c o n t r o l l a b i l i t y ,  K can be chosen so t h a t  all 



eigenvalues of t h e  mat r ix  A-BK have negat ive i e a l  p a r t s .  With K 

so chosen, t he  following lemma shows t h a t  (3.8) has a unique p o s i t i v e  

2 d e f i n i t e  so lu t ion  P provided 1 IGkl i s  s u f f i c i e n t l y  small. This 

toge ther  with Theorem 3 .1  implies t h a t  (1, E @ . 
k 

Lema 3 .1  

II(P) + A'P + PA t Q = 0 

has  a unique so lu t ion  P > 0 provided -- 

Here and below P > 0 (2 0) means P i s  p o s i t i v e  (semi) 

d e f i n i t e ;  P1 > P2 means P1 - P2 > 0 , e t c .  

Proof .  

Eq. (3.9) i s  equivalent t o  t h e  equation 

P = R + T(P) 

00 

R = J etA'QetAat 
0 

( 3  -9) 

(3.10) 

(3.11) 
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and 

m 

T(P) = 1 etA'II(P)etAdt 
0 

(3 .w 

We observe t h a t  R(P) i s  a l i n e a r  funct ion of P and R(P)  2 0 

i f  P z 0 ; it follows t h a t  T(P) has t h e  same p rope r t i e s .  Define 

P = R .  = R + T ( % )  1 J pv+l v = 1, 2 , . . .  . 

The sequence Pv i s  monotone nondecreasing ; it i s  bounded if, 

f o r  some e E (0, 1) , 

I f  (3.13) holds,  it follows by a r e s u l t  on p o s i t i v e  opera tors  

(e.g.  [TI, p.  189, Theorem 1) t h a t  

e x i s t s ;  and P 2 R > 0 . Since T i s  a cont rac t ion ,  P i s  

unique. It i s  e a s i l y  checked t h a t  (3.13) i s  a consequence of (3 .lo). 

4. Existence of an optimal con t ro l .  -- 

It w i l l  be shown t h a t  an opt imal  c o n t r o l  Ou exis t s  whenever 

(3.10) holds, and t h a t  Q0 i s  l i n e a r .  We use dynamic p r o g r m i n g  and 

t h e  we l l  known method of approximation i n  po l i cy  space [ 8 ] .  This 
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approach was suggested by t h e  work of Howard, who s tudied  a s i m i l a r  

problem f o r  Markov chains [ g ] .  The r e s u l t  depends on the following 

opt imal i ty  theorem. 

Theorem 4 .1  

Suppose t h e r e  e x i s t s  @ f: Q, , a func t ion  v(x)  of - - 

(ii) X,OV(X) + L[x, 0' (x)] = h ( X  E: E) (4.2) 

(iii) For every m-vector u , 
Xu~(.) + L(x, u) 2 h 

-- 
(x E E )  (4.3) 

Then @' i s  optimal. Futhermore - - 

Combining (4.2) and (4.3) we ob ta in  t h e  appropr ia te  

ve r s ion  of Bellman's equation 

(4.5) 

To prove Theorem 4.1 we need 
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Lemma 4 . 1  

Let X be  a d i f fus ion  process determined by (2.4), with d i f f e r e n t i a l  - - - -  

generator  2 and ergodic measure p . I f  v(x)  i s  a funct ion - of - _  - - 
(2) such t h a t  c lass  C -- 

then 

e (e.(.)) = 0 . 
P 

A proof i s  given i n  t h e  Appendix. 

To prove Theorem 4 . 1  observe t h a t  i f  0 E 0 then, by 

(4.2)  and (4.31, 

Taking expectat ions with respec t  t o  

Lemma 4.1, we obta in  

pa on both s ides ,  and applying 

h 5 &@{L(X, O ) )  

Again by Lemma 4.1, (4 .2)  implies  

= &*o tux, Q0 > I  

and t h e  r e s u l t  fol lows.  



To compute an optimal cont ro l  we seek a so lu t ion  of 

Bellman's equation, i n  t h e  form 

v ( x )  = X'PX (4.6) 

Subs t i tu t ion  shows t h a t  (4.3) holds i f  and only if P s a t i s f i e s  

( 3 . 8 ) ,  with 

-1 K = N B'P 

The con t ro l  determined by (4.3) i s  

4)O (x) = Kx 

We show next t h a t  (3.8) and (4.7) can be solved f o r  a 

unique pos i t i ve  d e f i n i t e  matrix P . For v = 1, 2, ... l e t  Pv 

be a so lu t ion  of (3.8) with K = Kv and def ine 

(4.7) 

(4.8) 

By Lemma 3.1, we can choose K1 so t h a t  P1 e x i s t s .  It w i l l  be 

shown t h a t  i f  5 i s  defined by (4.9) then P2 e x i s t s  and 

0<P2 5 P1 . Write v (x) = xlP  x , 4) = KVx and gV = 

It can be v e r i f i e d  d i r e c t l y  t h a t  (4.9) i s  equivalent  t o  the  condi t ion 

?w ' V V V 

for a l l  m-vectors u . That i s ,  @v+l i s  determined by t h e  
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minimizing operat ion (4.3) appl ied t o  vV , S e t t i n g  v = 1 and 

u = "(x) i n  (4.10), and uwing (3.8), we see t h a t  

- Q = II(P1) + (A - BK2)'P1 + Pl(A - BK2) + M + K;NK2 

s o .  (4.11) 

Write A2 = A - BK2 . Since P1 > 0 s a t i s f i e s  (4.11) i t  fo l lows  

(by a standard Liapunov theorem) t h a t  A2 i s  s t a b l e .  Hence 

m tA; tA2 
P = .f e [ M  + K;NK2 + lI(P,) + &]e d t  
l o  

Now P2 i s  t o  be determined by (3.8) with K = K2 , or 

(4.12) 

tA2dt . 
m tA; 

p2 = .f e [ M  + K;NK2 + lI(P2)]e 
0 

(4.13) 

A s  i n  t he  proof of Lemma 3.1, we solve (4.13) by successive 

approximations. S e t t i n g  P2(') = 0 we have 

(*I = .f 00 e tA; (M + K;NK2)e tA;r d t  

0 
p2 

(K ) I; P1 ( K  = 2, 3 ,  ...). Since t h e  P2 (K) are p2 and s imi l a r ly  

nondecreasing and bounded, 

P = l i m  P2 ( K )  ( K  4 m) 2 -  (4.14) 



e x i s t s  and s a t i s f i e s  (4.13). Thus P P and M > 0 implies 2 -  1' 

P 2 > 0 .  

It i s  not a s se r t ed  t h a t  t h e  so lu t ion  of (4.13) i s  unique; 

however, we may now proceed by induction and def ine  

v = 1, 2, . . .  , 

In t h i s  way we obta in  a sequence (PV) with 0 < P 5 Pv . 
Then 

V + l  

P = l i m  P (v + 4 V 

K = N - ~ B ' P  

e x i s t  and s a t i s f y  (3.8) and (4 .7) .  

Define 

tJ0 (x) = Kx . 
V(X)  = X ' P X  

h = tr(C'PC) 

(4.13) 

(4.16) 

Theorem 4.1 w i l l  be appl ied t o  show t h a t  @O i s  optimal.  By con- 

- c+.n i r t . i_onj  - -  -.. @O s a t i s f i e s  (4.2) and (4.3) .  Furthermore, i f  @ E @ 

t hen  (2 .5 )  and (4.16) imply t h e  t r u t h  of (4.1).  The exis tence of @' 

i s  now es tab l i shed .  
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We observe that Qo is unique in the class of linear 
h h  

controls; for if @ is another optimal linear control and h , P 
are the corresponding quantities dete mined as before, then by (-i.’+) 

h = h , 
h 

and by (4.16) 

A 
Since P , P are independent of C , (4.17) holds for all C , and 

from this it easily follows that P = P . Uniqueness of Q is a 
h 

consequence of (4.7). 

5. Example 1. 

The following artificial example is of interest because 

it illustrates the qualitative dependence of the control law on the 

intensity of the state-dependent noise. Let 

dx. = ax.dt - bu.dt + cdw + glxldw2i , i = 1, ..., n . 
1 1 1 li 

and 

L(x, u) = 1x1 2 + IUI 2 . 



, I n  (5.1) the  matr ix  G(x) = g l x l I  i s  not l i n e a r  i n  x ( c f . (2 .2 ) ) ;  

nevertheless  t he  methods used above apply equal ly  wel l  here,  and 

( 3 . 8 ) ,  (4.7) become 

2 g ( t r  P ) I  + (aI-bK)'P + P(a1-bK) + I + K ' K  = 0 

K = b P  . 

2 
This gives P = PI , K = bpI  , and h = nc p , where 

2 -1 2 2  2 1  
p = (2b ) (ea + ng2 + [ (2a  + ng ) + 4b 12] 

-2 2 
- n b  g g + w .  

-1 2 For l a r g e  g, 9" (x) - nb g x and t h e  optimal con t ro l  depends 

r a t h e r  c r i t i c a l l y  on noise  in t ens i ty .  

Now suppose t h a t  f o r  some k , u = 9(x) = kx i n  (5.1). 

Solu t ion  of (3 .5 )  and appl ica t ion  of (4.7) y i e l d  

2 2 2 -1 = nc (1 + k )[2(bk - a) - ng 1 

provided 

(5 .3)  
2 

bk - a > ng /2 . 
I f  t h i s  inequa l i ty  f a i l s  ( i . e .  cont ro l  i s  not s u f f i c i e n t l y  vigorous) 

t h e n  i n s t a b i l i t y  r e s u l t s ,  i n  t h e  sense t h a t  e i t h e r  A, = + Q) or 

i s  not  defined: t h a t  i s ,  Xo i s  no longer  ergodic.  Using 
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t h e  methods of [ 5 ]  one can show t h a t  XQ i s  ergodic ( i . e .  pQ 

e x i s t s )  i f  and only i f  
2 

bk - a > (n-2)g /2 . 

6 .  Example 2 .  

Our next example i l l u s t r a t e s t h e  f a c t  t h a t  an admissible l i n e a r  

con t ro l  can f a i l  t o  e x i s t  i f  t he  i n t e n s i t y  of state-dependent no ise  

i s  l a r g e .  L e t  

where r > 0 i s  a cons tan t .  Then E(P)  = r t r ( P ) I  and ( c f . (3 .12 ) )  

00 
t (A-BK) et (A-BK) dt 

T(P)  = y t r ( P )  J e 
0 

Let K = (k k2) and denote t h e  i n t e g r a l  i n  (6.2) by S . S e x i s t s  

( i . e .  A - BK i s  s t a b l e )  i f  and only i f  kl> 0 , k2 > 0 . A b r i e f  

1' 

ca lcu la t ion  shows t h a t  i n f ( t r  S : kl, k2 > 0) = 1 . I t e r a t i n g  t h e  

t h e  operator  T we then f i n d  

and so  CT (') 

s t r u c t i o n  used i n  the  proof of ex is tence  f a i l s  i f  

present  example it i s  easy t o  v e r i f y  d i r e c t l y  t h a t  (3.8) has  f o r  Some 

K a so lu t ion  P > 0 , i f  and only i f  y < 1 . 

converges only i f  y < 1 . This shows t h a t  t h e  con- 

y b 1 . For t h e  



7. An a l t e r n a t i v e  i n t e r p r e t a t i o n  of (1.1). - - 

It i s  worth emphasizing t h a t  the  choice of I t a ' s  equation 

(2.1) as  a p rec i se  vers ion  of (1.1) i s  somewhat a r b i t r a r y .  We s h a l l  

discuss  b r i e f l y  an a l t e r n a t i v e  version of (1.1) which may be more 

appropriate  i n  engineering appl icat ions.  Eq. (1.1) i s  a purely 

formal equation s ince  the  "der ivat ives"  G1, G2 do not  e x i s t .  In  

wr i t i ng  (l.l), we usua l ly  have i n  mind a phys ica l  system perturbed by 

noise  with a power s p e c t r a l  densi ty  which i s  e s s e n t i a l l y  constant  with- 

i n  t h e  frequency passband of t he  system. However, t o t a l  noise  power i s  

presumably f i n i t e ,  and t h i s  f a c t  i s  overlooked i n  adopting t h e  p rec i se  

model (2 .1) .  

determined by (2.1)  adequately r e f l e c t s  t h e  p rope r t i e s  of t he  phys ica l  

random process of which (1.1) i s  a rough descr ip t ion .  

has been discussed i n  a p rec i se  fashion by Stratonovich [lo], [ll] 

and by Wong and Zakai [12]. 

t o  a s soc ia t e  with (1.1) w i l l  depend on what d e f i n i t i o n  i s  adopted of 

Thus the  question a r i s e s  whether t h e  d i f fus ion  process 

This quest ion 

It turns  out t h a t  t h e  proper It8 equation 

t h e  formal s tochas t i c  i n t e g r a l  

b 
J = / G[x(t)]G(t)  . 

a 

Let I t , )  be a p a r t i t i o n  of t he  i n t e r v a l  [a, b] . On the  b a s i s  

of r e s u l t s  of [ lo]-[12] it i s  na tu ra l  t o  adopt f o r  (6.1) the  

d e f i n i t i o n  
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as  m=(tv+l - tv) -+ 0 . Let us now suppose t h a t  x ( t )  has t h e  

It8 s tochas t ic  d i f f e r e n t i a l  
V 

d x ( t )  = f ( x ) d t  + G(x)dw 

where G(x) = [g i j (x ) ]  . Then it can be shown [lo] t h a t  

b b 1 
. J = s Gx[x(t)]  G[x( t ) ]d t  + J G[x(t)]dw(t)  

a a 

where the  second i n t e g r a l  i n  (6.4) 

and Gx 

i s  an I t 6  s tochas t i c  i n t e g r a l ,  

G i s  the  vector  with ith component 

(6.3) 

(6.4) 

This r e s u l t  means t h a t  an a l t e r n a t i v e  n a t u r a l  i n t e r -  

p re t a t ion  of (1.1) i s  t h a t  the  process x ( t )  has the  I ta  s tochas t i c  

d i f f e r e n t i a l  

(6.6) 
1 dx = [AX - BU + 7 GX(x) - G(x)]dt + CdWl + G(X)dW2 

Eq.  (6.6) d i f f e r s  from (2.1) by t h e  presence of an add i t iona l  d r i f t  

term contr ibuted by the  c o e f f i c i e n t  of t h e  state-dependent no ise .  

Suppose t h a t  G(x) has the  form (2.2) .  Then (6.6) can 

be wr i t t en  

h 

dx = AXdt - Budt + Cdwl + G(x)dw2 



h 

where A is a modified system matrix with elements 

A 3- aij = aij + gikk?gJkj ' k.t 

After this modification the discussion of §§2-6 remains unchanged. 

In light of this discussion consider again Example 1 . 
Here G(x) = glxlI , and 

2 
Gx(X) G(x) = g x 

2 A 

Thus 

replacement. With the new model, 

A = a1 + (g /2)I and the previous results hold with this 

-1 2 (x) - (n + 1)b g x (g +-) ; 

that is, the optimal control gain is somewhat higher than previously. 

Suppose next that u = O(x) = kx . Then (cf.§5) ha < if 

and only if 

2 bk - a > (n + 1)g / 2  

Comparing this result with (5.3) we see that the choice of math- 

ematical model may be critical in an assessment of the stability 

properties of the physical system of interest. 
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8. Alternative problems. 

A variety of linear regulator problems with linearly state- 

dependent noise can be discussed by methods similar to the foregoing. 

If the index of performance is expectation of a quadratic functional, 

and if no a priori bound is placed on magnitude of the control vector, 

then in general the optimal control (when it ex sts) is linear in 

x and depends on noise intensity. 

To mention one interesting variant, let 

d.x = Axdt - Budt + G(x)dw 

and consider the problem of minimizing 

a, 

&;( 1 [x(t)'Mx(t) + u(t)'Nu(t)]dt) 
0 

If u = @(x) and @(O) = 0 then (8.1) admits the null solution 

x(t) E 0 (see e.g. [l3]). The functional (8.2) is finite provided 

x = 0 is globally asymptotically stable in an appropriate sense. 

By a slight extension of the methods of [l3] one can show that 

is stable if and only if a continuous function V(x) exists such 

that 

Xo 

(i) v(x) > 0 (x # 0)  ; v(0) = 0 

(ii) ~ ( x )  -++ m as 1x1 + m 

(iii) $,V(X) 5 - 1x1 , x f o . 2 



i 
Call Q admissible if XQ is stable. Just as in $3 we 

Q(x) = Kx find that 

P , and this is so whenever G(x) is restricted by the inequality 

(3.10). 

mined exactly as before. 

is admissible if (3.8) has a positive solution 

Under these conditions the optimal linear control is deter- 

Acknowledgement. 
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problem and for pointing out that Bellman's equation admits a quadratic 

s olut i on. 
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Appendix: Proof of Lemma 4.1 --- 
Let ex denote expectation on the paths of X when 

x(0) = x E E . Let t > 0 be fixed and write 

We show first that w exists a.e.[p] and 

e (w] = e. ( V I  . 
P P 

If v is a simple function,(l) is obvious. If v 2 0 and vn 

are simple functions with vnr v , then 

is measurable and wnT w . By monotone convergence 

The general result follows by applying the argument to the positive 

and negative parts of v . 
Now let v be of class C ( 2 )  and of compact support. 

By the Ita-Dynkin formula [4] 



= o .  

Since iv[x(s)] is bounded and almost surely continuous (in s) 

there follows, by dominated convergence, 

t 
&P(d'v(x)) = & (e { lim t-l 2v[x(s)]ds) 

tso 0 

= l i m  e ( e  it-' $v[x(s)]ds)) 
0 P X  tO 0 

= o .  

In general, suppose V(X) satisfies the integrability condition of 

the hypothesis. Then for any e > 0 there exists a smooth function 

v(x) 
Iu 

of compact support such that 
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